
Dynamically Loading JSON Data into A
Bootstrap Web Page

By Chad Jordan – July 9th, 2015

1

In this guide you will learn:
1. The fundamental definitions of Bootstrap, and JSON
2. The key features of using the Bootstrap 3.3.5 front-end framework
3. How to create a responsive HTML web page to comply with mobile devices
4. The process of dynamically loading external JSON (JavaScript Object Notation) data into

a Bootstrap-built Chevrolet web page

In August 2011 an API (Application Programming Interface) known as bootstrap was created as
a free, open-source JavaScript framework for responsive, mobile-first, front-end web
development. Bootstrap is a powerful toolkit that works hand-in-hand with HTML, CSS, and
JavaScript to build web pages and applications. The technology was originally created for
Twitter by Mark Otto (Design Architect), and Jacob Thornton (Engineer). The framework
excelled very quickly among communities of web designers and developers due to its
responsive nature, diverse flexibility, ease of use, and consistent design with reusable
components. It offers great extensibility with JavaScript, coming with built-in support for
jQuery plugins and a programmatic JavaScript API. Bootstrap can be used with any IDE or
editor, and any server-side technology and language, from ASP.NET to PHP or Ruby on Rails.
Bootstrap allows developers to focus their attention strictly on development without the
burden of design, providing a sleek website up and running quickly. It also allows web
designers to hone their skills and create Bootstrap themes. Bootstrap is available in two forms;
1) as a precompiled version, and 2) as a source code version. The source code version uses the
Less CSS preprocessor, but if you’re more into Sass (Syntactically Awesome Stylesheet), there is
an official Sass port of Bootstrap also available.

In my earlier guide about dynamically loading XML data into a Flash website, I provide details
from an external XML (Extensible Markup Language) data file, create the internal content using
Flash, and wrote all of the functionality using ActionScript 3.0. This guide will obviously be very
different for the purposes of the content being loaded and the programming being used for
said content and functionality, but the concept of dynamically loading external data into a
website is still very similar. For this guide, I’ll be using JSON (JavaScript Object Notation) to load
my external data. JSON is simpler than XML, but XML is more powerful.
JSON Example:
For common applications, JSON's concise semantics results in easier to read code.
XML Example:
For applications with complex requirements surrounding data enterprise exchanging, XML is
more powerful with verbose features which significantly reduces software vulnerabilities.

The purpose of this small task is to demonstrate the use of dynamically loading JSON data into a
Bootstrap webpage to provide the user with basic information. The overall purpose is to simply
load the external data, and verify that the JSON data is read in, properly displays on the screen,
and filter the data by type. In the case of a Chevrolet webpage, the user should be able to filter
their search by the type of vehicle that they are wanting information for. These tasks are fairly
straightforward thanks to the features of Bootstrap.

Introduction

2

Plugins can be included individually (using Bootstrap's individual .js files), or all at once (using
bootstrap.js or the minified bootstrap.min.js). Bootstrap includes a responsive, mobile-first grid
system that appropriately scales up to 12 columns as the device or viewport size increases. It
includes predefined classes for easy layout options, as well as powerful amalgamations for
generating more semantic
layouts. Bootstraps
simplicity allows for much
faster implementation
due to its huge
assortment of JavaScript
plugins. This also allows
for easier integration of
custom-created content
from other platforms.
With the pre-compiled
version of Bootstrap,
developers can already
use pre-defined/pre-
styled components at
their fingertips. Over a
dozen reusable
components are built to provide iconography, dropdowns, input groups, navigation, alerts, and
much more. Bootstrap includes over 250 glyphs in font format from the Glyphicon Halflings set.
There are also elements of base styling with abbreviated stylizes of implementation with
HTML's <abbr> tag for elements using abbreviations and acronyms to show the expanded
version on hover. Abbreviations with a title attribute have a light dotted border at the base
which helps the cursor on hover, providing additional context on hover events. Example:

<abbr title="HyperText Markup Language" class="initialism">HTML</abbr>

We can do the same thing with Addresses by using the <address> tag. This presents contact
information for the nearest ancestor or the entire body of work. There’s also a lot more
baseline styling available for blockquotes, lists (Ordered and Unordered) inline, description,
alignment, and emphasis classes. Bootstrap has multi-browser compatibility for Chrome,
Firefox, Opera, Safari, and Microsoft Edge across Windows and macOS. Unofficially, Bootstrap
should look and behave well enough in Chromium and Chrome for Linux, Firefox for Linux, and
Internet Explorer 9. Customization for Bootstrap is truly unique because for maintainability
you can leave the initial Bootstrap source code as-is and merely add custom code in your
external stylesheet. The code in this external stylesheet will override the existing styles and is
good for basic customizations however, for more extensive alterations, SASS is the
recommended method. Doing more with less code has always been JQuery’s tagline, but with
even more features, and plugins built into Bootstrap, not only can we do more with less code,
but we can do even more in less time as well. When it comes to responsive design, grid layout

Features of Bootstrap

3

plays a significant role, and creating a mobile-friendly website is easy and smooth with the help
of Bootstrap. It has ready-made classes which help to recognize the number of spots in the grid
system. Using Bootstrap, responsive designs are made easy which means that it’s far more
mobile-friendly than other frameworks.

Writing code for Bootstrap isn’t much different from HTML since it’s a framework of JavaScript
plugins rather than a language. In this guide, I’m not installing any additional dependencies or
software, but rather referencing the current online files that are provided by the Bootstrap
website. Otherwise, the process of building this webpage is going to be very similar to my
previous guides for front-end web development. Unlike my previous guides when I declared
XHTML strict, ever since HTML 5 came out last year, we no longer declare XHTML strict in our
main document. In modern HTML we simply add <!DOCTYPE html> at the top which in itself is
far easier than the extensive info that we used to declare. The document mode meta tag on
line 5 with the X-UA-Compatible declaration allows the developer to choose what version of
Internet Explorer the page should be rendered as. When optimizing the web for mobile
devices, it’s important to understand how these responsive elements are implemented, and
part of this implementation starts on line 6.

Typically, mobile-optimized sites will have a meta viewport tag like this. The viewport is the
area of the window where the web content can be seen. This is generally not the same size as
the rendered page, in which case the browser provides scrollbars for the user to scroll around
and access all the content. The responsive control is what will allow for the optimization of
mobile devices. The remaining parts that control the responsive content are written on lines 8
and 9. As far as changes to your CSS element priorities, changes in your style.css file will
override the existing stylesheets that are being referenced on lines 8 and 9. With this in mind, I
leave my style.css file blank unless I decide to make changes later on, but for the sake of this
guide, Bootstrap will handle all of the styling and responsive controls that I need for this guide.
For my <script> tag on line 12, this source URL will reference the file location and allow the
animation effects that I want to create. Beginning on line 15 I create a div for the main

Building A Bootstrap Webpage

4

container to hold the title within the header <h1> tags and then print out the tagline
underneath. After closing out with my <div> tags, this is the output result in the browser so far:

Per my earlier mention of allowing the user to filter the vehicles by type, this is how I provide a
basic layout of controls for the user to perform these actions. Basic checkboxes are not difficult
to make, even in traditional HTML code with no CSS required. The class, checkbox is made as

an <input> tag just as I wrote in my previous regex validation guide. In HTML, plain checkboxes
can be made with little to no effort. These checkboxes are made from lines 29 to 40. Each
<input> tag is given an input type, in this case, “checkbox” and they can be passed a class, and
id, a name, or a value attribute. I’ve passed a class, and a value for mine, and simply provided a
name outside of the input tag, but leaving the name inside the <label> tag will provide a name
right next to each corresponding checkbox. This next example will be positioned above the
container that displays the vehicles. Each time the user changes a checkbox within the search

5

filter, the numbered results will change based on the data that is included in the JSON file.
Example: If there are 4 SUVs, and the only checkbox selected is SUVs, then only SUVs will
display with the number 4 beside the “Vehicles Matching Your Filters:” text. By default, no
checkboxes will be selected at runtime which means all vehicles will display in the container
with the total number of cars beside the “Vehicle Matching” text. This next block controls how
we will set up and reference the files needed for the animation effects in Bootstrap. Just as I
referenced bootstrap data at maxcdn.boostrapcdn.com for styling my page with the most
current CSS files, I do the same thing again except this time with JavaScript. The divs contain
the individual sections for each piece of content that will be displaying our search results for

the vehicles and references back to the CSS styling that I call earlier in the head of my page.
You’ll notice on line 55 that I set the anchor tag reference to #zoom because by putting the
hashtag symbol before the variable this prefix is declaring a private variable. Setting it this way
will nullify any click on the thumbnail image that the user may attempt to make. The main
purpose of this exercise is to merely demonstrate how to load JSON data into a Bootstrap page
so there is no need for any additional functionality here. Finally, near the bottom of the page, I
write a script tag to reference the JavaScript file (app.js) that I will use to write all of the
functionality and other behavior for the page. However, before I start writing that, I’m going to

reference the JSON file. As I mentioned
earlier, when it comes to JSON versus XML
syntactically, JSON is easier to read and
write. The first list in the section of
vehicles falls under the categories of cars,
performance, SUVs, and trucks. Under the
cars category, I have the 2015 Spark
(Green) car, the Sonic (Red), the Cruze
(Cobalt) etc. etc. You can see that I specify
a model, a color, a year, and price for each
car. This is the information contained in
the JSON file that will be fed into the
webpage at runtime. Just like XML, we can

6

store however much data we want within however many different categories that we wish.
Once I’ve finished categorizing the normal vehicles into the ‘car’ category, I store the more

high-performance vehicles into the
‘performance’ category, and so forth
until I have placed each car into its
own category. The remaining data
isn’t required to post in this guide
since it all follows the same format for
every category. These images among

several others are stored in a folder called ‘img’ and they will also be loaded into the webpage
via my app.js file.

Just like everything else in this program, the JavaScript portion won’t be that bad to write.
Beginning on the first line we write a variable to cache the JSON data. Next on line 3 when the

document is ready, this function will
set up the page and the variable
getJSON is executed to retrieve the
data from the JSON file chevrolet.json,
takes that data, and then assigns it
back to the variable cachedData.
Starting on line 9 we create a function

Creating the Functionality

7

call to ‘filter-type’ and execute it against any change made to the cached data. Next, we have
to write a function for filterCachedData so this function call is made on line 14 and then on
lines 15 and 16 we get the types of vehicles selected. The variable filterTypes is set to an array
to store the types of vehicles, but since the page loads with no options selected, we ensure that
vehicleMatchCount is set to 0. Once the user makes choices, the information data in the array
changes. The function on line 18 is simply checking each time the user pushes a value for each
checkbox. Line 22 clears the match list so there isn’t any unwanted data clogging up the cache.
Line 24 sets up an iterator that checks the length of the filters in the vehicle list and if there is a
match, it increments vehicleMatchCount allowing to render the matches of the vehicles found.

Starting on line 29 we create a variable called templateVehicle which will be searching for a
very specific file format for each private variable called vehicleImage. JSON searches for a
specific naming convention for object notation, and this is not just the data within the file, but
in order to load the images, we declare how we want the image files to be named in a format
that JSON will search for. In this case, the attributes of the format are vehicle year, followed by
model, color, and then the file extension which in this case is .jpg
Example: ‘2015_Chevrolet_Camaro_Red.jpg’ Now with this code in place, after testing it, I can
confirm this program runs flawlessly, is fully responsive and performs the necessary functions
that I wanted to demonstrate. Would you like to test the demo? Click here.

My hope is that this guide has helped teach how with just a little effort, a lot more can be done
using Bootstrap than traditional markup and JavaScript. I only recently started learning
Bootstrap but since I’ve previously been exposed to numerous other programming languages &
technologies over the years, the foundations of computer science have taught me to be more
adaptable in diverse development environments. Essentially Bootstrap to JavaScript is what

Conclusion

https://www.wondercreationstudios.com/Bootstrap/chevroletpage/index.html

8

Laravel is to PHP. As of now, it’s the best framework I can think to use as an API with
JavaScript. All diagrams and code presented in this guide were created and written by Chad
Jordan for learning purposes only. This Bootstrap page was made with the latest version 3.3.5
and written using the Vim code editor. For any possible inquiries such as general questions
regarding this guide or other professional inquiries please feel free to email me at
cjordan@wondercreationstudios.com
Resources Used:

• Getbootstrap.com
• Bootstrapdocs.com
• Freecodecamp.org
• W3schools.com

https://getbootstrap.com/
https://bootstrapdocs.com/
https://freecodecamp.org/
https://www.w3schools.com

